
OTIC I EL COPY

Lfl
0n
Cf)

NAPPROXIMATELY INTEGRABLE LINEAR STATISTICAL
MODELS IN NON-PARAMETRIC ESTIMATION

by
B. Ya. Levit

University of Maryland

Technical Report #90-37C

IMT)

OCT 0 1 1Zo

Department of Statistics
Purdue University

August 1990

... ... .. -. - Z,:.y _ ::_ _

0

4'3



Approximately Integrable Linear Statistical Models

in Non-Parametric Estimation

B. Ya. Levit

Sumnmary /

The notion of approximately integrable linear statistical models is intr6duced to an-

alyze the higher order optimality properties of some common nonparametric estimators.

The approximately integrable models suggest a useful approach to a unifed treatment of

both regular and irregular non-parametric problems. It is shown that wltl such models-- F

any rate of improvement ranging from (log n)'O/n 2 to 1/(n(log... log n)&), a > 0, of the

classical non-parametric procedures can be anticipated. Both an example of a first order

asymptotically optimal estimator with the unusual rate n 1 log n and an estimator with

an extremely slow unimprovable rate of convergence 1/(log... log n)* are presented.
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Approximately Integrable Linear Statistical Models

in Non-Parametric Estimation

B. Ya. Levit

1. Introduction

The aim of the present report is to develop the notion of approximately integrable

linear (a.i.l.) statistical models related to the study of the "next" order optimality in non-

parametric estimation. It appears consistent to keep the exposition at present at the least

technical level restricted so far to quadratic losses and scalar valued functionals. At the

same time, the reader will probably notice a number of generalizations readily suggesting

themselves, some of these to be reported elsewhere.

A useful lower bound for a local minimax risk in estimating such functionals will be

derived (Section 3). Based on this bound it will be demonstrated that with a.i.l. models any

rate of the "next" order improvement of the (first order) asymptotically optimal estimators

may be anticipated ranging from (log n)a/n 2 to 1/(log... log n)an, for k = 1, 2,..., a > 0.

k

Clearly when this is the case the next order improvement may well challenge the

asymptotic optimality of a given first order efficient estimator. At the same time, with the

a.i.l. models one easily discloses nonparametric problems with first order efficient estimators

converging at rates (e.g. n - 1 log n) different from the common one (1/n).

Another highlighting point is that the a.i.l. models appear to be rather well tailored to

incorporate both regular (as e.g. cdf estimation) and irregular problems (such as estimation

of the derivatives of cdf). Both types can be treated then, along similar lines using the

above mentioned lower bound. With this approach one discovers a close relation between

the optimal rates of improving the standard estimators of the regular functionals and the

optimal estimability rates for the irregular ones.

We introduce a.i.l. models after presenting some prerequisites.

2. Some Preliminaries and Definitions

Let Xl,..., X be an independent sample in a measurable space (X, A) with a com-

mon distribution F ranging in a given subset F of distributions defined on A. It will prove

convenient to supply Fr with a relevant topology T. While different competing measures of

closeness on F are readily available, at this stage it appears difficult to argue conclusively

in favor of any particulnr one. Still mainly for its clear statistical meaning we will make
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use in the sequel of the topology T = T on F induced by the distance in variation just to

fix a workable and relatively simple one.

Given a real valued function T(F), F E ', we address below optimal rates of estima-

bility and, provided first order efficient estimators exist, higher order optimality properties

in estimating the unknown value %P(F) based on given observations.

Let %I, = T,(Xj,..., X,) be an arbitrary estimator of T(F) and

Rn(%k,F) = EF(n - %P(F))2 . (2.1)

While there are plenty of loss functions one can choose from, the particular one in (2.1)

serves well the purposes of this presentation. By an estimator T,, we mean below any

sequence of estimators %P,, n > 1.

Let us recall next some asymptotic properties a reasonable estimator T,, of '(F) is

expected to share. The underlying common idea behind the different definitions to be used

below is that a "nice" estimator should exhibit reasonable global consistency properties
while being locally unimprovable. To this point we present the following definitions keeping

in mind their reference to a given underlying set of distributions Y.

Definition 1. The function T(F) is called

a) p(n)-rate estimable if there exists an estimator %,, such that, locally uniformly in F,

R.(q'., F) = O(p(n)), (n -- oo);

b) exactly p(n)-rate estimable if it is p(n)-rate estimable and moreover for any sequence

p'(n), p'(n)/p(n) --+ 0, and any non-empty vicinity V E T no estimator %,, satisfies the

relation

R.(,., F) = O(p'(n))

uniformly on V.

Assume that T,(F) is exactly p(n)-rate estimable. The next definition refers to the

first order asymptotically optimal properties in estimating 4(F).

Definition 2. An estimator 'in is called locally asymptoticdly unimprovable or first

order asymptotically optimal if for any non-empty vicinity V and a positive number R

there exists no such th-At for n > no no estimator '1 qtisfies the inequality

R,(41i, F) !5 R.(%k , F) - Rp(n), F E V.
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Let now %,, be a first order asymptotically optimal estimator. The following definition

refers to the "next" order properties of %P..

Definition 3. The estimator T. is called

a) pi(n)-rate improvable if there exists a non-empty vicinity V, positive number R and an

estimator V such that locally uniformly in F

R( FF) < Rn (T n,F) - Rp,(n)I(F E V) + o(pi(n)).

Otherwise 'Pn is called pi(n)-rate unimprovable on F (here pi(n)/p(n) - o(1), n --+ cc);

b) exactly p(n)-rate improvable if it is px(n)-rate improvable and moreover for any non-

empty vicinity V and any sequence p,(n), p'(n)/pj(n) -- oo, n --- c, , F is p'(n)-rate

unimprovable on V.

Let 0: x --* R' be a measurable function. It appears the linear functionals of the form

(F)= J 4(x)dF(x) (2.2)

provide useful appro.imations to a variety of meaningful nonparametric functionals both

regular and irregular.

Let

=

Conditions for asymptotic optimality of the estimator %,n were found in Levit (1974); see

also Koshevnik and Levit (1976). We summarize below the corresponding result for the

sake of reference.

Theorem 2.1. Assume the set F satisfies the following conditions:

1) f ib2(x)dF is locally bounded in F,

2) for any F E F there exist a sequence of functions Ok(x) and positive numbers ak

such that F contains, for any k, the exponential family of distributions Gc defined by the

relation
- (x) = exp{c4'k(x) - b(c)}, Icl < a,, (2.3)

and

E J(O(z) - ,(x))2dF = 0. (2.4)
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Then %P,, is first order asymptotically optimal estimator of '(F).

Conditions (2.2)-(2.4) represent corresponding linearity and integrability properties

of the functional '(F); the full meaning of the later term to be explained in subsequent

publications. We elaborate further on approximately linear integrable models in the next

section.

3. Approximately Integrable Linear Models:

Lower Bounds

Let T(F) be a given functional to be estimated from the sample X 1,...,X, and

,(X), x E X - a sequence of real valued measurable functions. Denote

Bn,F EFbn(X)- (F)

, = VarfV).(X) (3.0)

where X is distributed according to F.

In the particular case of the functional (2.2) with

4rF= VarF4(X)<o00

denote also

An,F = a 2 (3.0')

Approximately integrable linear (a.i.l.) models to be considered below can be de-

scribed by the following two assumptions.

Assumption AL (approximate linearity). Locally uniformly in F

a, F + Bn,F = o(1), n ---+ co.

Assumption AI (approximate integrability). For every F E F and any of its vicinities

V there exists positive an such that the exponential family of distributions G,, defined

by the relations

dG,, = g(x,c)dF = exp{cin(x) - bn(c)}dF, (3.1)

bn(c) = log J exp{c'n(X)}dF (3.1')

exists and belongs to V for Icl < an.
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Due to the assumption AL,

n

% -4E'n (Xi)n =

is a consistent estimator of '(F) whilea, and Bn,F provide an upper bound in estimating

%P (F) as

R, ('!, F) n- O n,F + Bn,F. (3.1")

It is to be shown next that they provide a useful lower bound in estimating I(F) as well.

Whenever the family (3.1) is involved we will denote

B,,F(c) = B. 2, 2, An,F(C) = An,Gn, (3.2)

etc.

Let 0(a) denote the class of continuously differentiable probability densities A vanish-

ing outside the interval (-a, a) with

I(A) - (A'(c))2 dc < oo.
I A (c)

-a

Theorem 3.1. Assume that the family of distributions defined by (3.1) satisfies assump-

tion AI w.r.t. a vicinity V of a given F E F" and An() E 0(an). Then the following

inequalities obtain

inf sup (R.(,In,F) - R. F) > -nB.,o(c) 2 A(c)dc (3.3)
*n FEV -- , B CAn(C)

-aQn

ns (n -an, A J (2n-'A(c)Bn,Fo(C) - n- ' A(c) )dc (3.4)4nf, FEV~ I Rna A n( F -

-an

and in the case of the functional (2.2) with locally bounded a2 = Var F V(X)

an

inf sup(Rn(%P',F) - n-aF) J (-nIAfo(C)+
*n FEV I

-an,

+ 2n-A' (c)Bn,F,(c) -n-(A (c)) 2 )dc. (3.5)
A6(c)
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In applications below we will choose O, appearing in Theorem 3.1 so as to bring

the upper bound (3.1") and lower bounds (3.3)-(3.5) as close as possible in their rates of

decroase. It seems tempting to optimize these lower bounds by a particular choice of A,,(-);

a task which however we won't pursue here.

Proof. Denote 0(c) = I(G.,'), a'(c) = af,Fo(C), B(c) = B.,Fo(c), b(c) = b,(c) and
n

(n)(-.,c ) = H g(xi,c) = exp{n(C4'n - b(c))}. By (3.1')

0(c) = b'(c) - B(c). (3.6)

Hence d log g (n) (Z_,C) = n(%,, - b'(c)) = n(@,n - 0(c) - B(c)). (3.7)
dc

Consider the Bayes estimator %PA of Q(F) w.r.t. risk function Rn(Tn, F) and the prior

distribution induced on the subfamily G,,c E V, Ice < an, by the An(c):

an

a. =On, + tln(On)
f g(n)(1, c)An(c)dc

where
a.

f g (n)(Z, c)(9(c) - On)An(c)dc

Yn an

-an

One obtains
an

R,(,Vx,= J Rn('hA, Gn,,)A(C)dc (3.8)
-an

anJ n + ,) - 0(c))2 dG ().)An(c)dc I, + 12 + 13,

-an X7
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where

an

= J (A 2 ()+ 2 c)(c)dc ~, (3.9)L
-anX

-aan

-aan

a-a

(f g(n~)(j(c)An -d

-an

13 = 2J X n(%lin)dF (n)(xJ~i -()) (n z )nC

= -212.

Thus

Rn('D'A, A) = 11 12. (3.10)

One then obtains further that
a n

0 < fnin An (c -_A B(c) dG (n)(x)An(c)dc
-an

where

-
a.

14 =f () - B(c)) 2 A(c)dc (3.12)

and
an

15 = -2J /A~i Jd~n g1(n) (,c)(n1'A' (c) - B(c)An(c))dc

-an

an

=- 2L gn(' mn) J g(n)(Z' C)(O(C) - 'nA(),

_ 212 
-nncdd
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where integration by parts and relation (3.7) were used to obtain correspondingly the

second and third equalities. Thus 14 _ 12 and (3.8)-(3.12) result in

R.(4,x, A) _ , - 14 =

an R .(~ njG ,IC nA (c) -B ''' )A (c)dc =
-an

a,
f (nra 2 (C)A(C) + (2n' '(c)B(c) - n-2 -.(A(c)) ))dc

-ann

wherefrom the theorem follows.

Our next goal is two-fold. First it will be shown by the use of Theorem 3.1 that any

rate of the higher order improvement of first order asymptotically optimal estimators may
be anticipated ranging from (log rn)nrr- 2 to (log log.. .log n)-an- ' , k = 1,2,...,a >

k
0, for approximately integrable models. Second a close resemblance will be exhibited

between next order optimal rates of improvement for such estimators and optimal rates of

estimability of some non-regular functionals, the common ground for a combined treatment

of these rather different problems being furnished by the notion of a.i.l. models.

4. A.i.l. Models: First Applications

Without loss of generality we can restrict ourselves, within the scope of the paper, to

estimating the simplest function

T1(F) = j xdF.

As is well known the tail behavior of the distriLutions F E F is of primary importance in

assessing the asymptotic properties of the sample mean

1 n
= x,.

We will proceed examining the crucial role of this tail behavior in assessing the best rates

of improving upon ±n. In particular the quantity

F = fll>a zf

will matter as may be inferred from the next lemma.

9



Lemma 4.1. Assume that for a given space of distributions (F, T) there exist a) a

continuous decreasing to zero function C(v), v > 0, a positive -y and for any F E .F such

-t1(F), It 2(F), 7 3 (F), 0 < - 1(F) :< 72(F) :5 7, 73 () locally bounded in F, that

-y(F)C(v) _< C)(v) _< y2 (F) (v), v > 7 3 (F), (4.1)

and b) for any F E .F and any its vicinity V C F, a S = 6(F, V) > 0 exists, such that the

family of distributions Gc of the form

dG - exp{cx(V) - b(c)}, ICI <6 V-

dF

belongs to V for all sufficiently large v, where

X = X l(11<,)(X ).

Define v = vn,, by the relation
/2

(V) = - "(4.2)

Let v' be any sequence such that for n - oo

V 1 + 0(1 1 o(1). (4.3)

Denote ,/,,(X) = x("') and let
n

iv. n1 n(Xi). (4.3')
i=1

Then 1) ±n is exactly ( n-)2-rate improvable and 2) locally uniformly in F,

Rn On, F) < °3 F (F)( + o(1)), n -oo.

n 4-y n

Proof. Let

F C= CG ).

With notations (3.0), (3.0') one obtains

IB,,F ) (4.4)
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nF "2 2),F ( - (24(F) - B.,F)B.,F
= 12(V)(1 + o(j)), (n , o) (4.5)

locally uniformly in F, and (2), , c)< )(V'.t46
G (,VnC e 46

Now applying Theorem 3.1 with On(x) = ( -), an = 6 (v) - ', A,(c) A(anc) where
1

A(.) E 6(1), A, = f jA'(c)jdc, A2 = f A(c) dc, A', < A2 < oo, one obtains from (3.5),
-1

using (4.2)-(4.6),

inf sup (Rn(Pn, F) - n- _>

4,- FEV
sup(2)-n- I sup (2 V, , c)(1 +6-1 Aj)(1 +o(1)) -A2 6-2(Ln)2 >_

IcI<a, n

> -n-l e26 y(F) (v')(1 + 6-1 A1 )(1 + o(1)) - A6-2(Ln)2 -

(e 2 6
2 (F)(1 + 6-1A,) + A2 6- 2) 2(1 + o(1)), (n -0),

proving assertion 1).

Applying once again (4.2)-(4.6) one obtains further locally uniformly in F:

Rn('I,, F) = n 2 2: 2(n,F + Bn,F
<n-0 V + (-n- () + (VI)- 2 ( )(v,)) 2 )(1 + o(1))
< .- 4 - -(LJ(1 + o(1))

F 2n (vn)(1 + o(1))

-1 2 ^/1 nin -rF - ,() (1 + o0)),4- n

proving ascertion 2).

We present next a few exampies in which Lemma 4.1 can be effectively used to define
n

rates of improvement of the sample mean ±n = n Xi. Notice that in examples 1-3

X is a first order asymptotically optimal estimator of IP(F) = EFX due to Theorem 2.1.

Below F(x) stands for 1 - 1-(x) + F(-x), (x > 0).
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Example 1. For given a, #, y and a real p consider the class F of distribution functions

F(x), (x E R) such that for some -fi(F), 72(F), 0 < y1(F) _< 7Y2 (F) < -y and locally

bounded function 7 3(F)

71(F) _< (x 'e-Sz)-T(x) _< 7 2(F), x > 1 3 (F).

Let L t1 1 , log /V 1 log 2yn + --l log 2 lgn )-

a

and %,, be defined as in (4.3').

Propsitin 4. a)X, i exatly(log n a
Proposition 4.1 a) -t is exactly e improvable on F and b) locally uniformly

in F E -F

Rn(4'JF) : Oa(f) -y1(F) (log n)' (1 + o1)), n -- o.
n 47y n 2

Notice that the smaller is a, i.e. the heavier are the tails of F, the larger is the

improvement rate of the sample mean.

Proof. Using the relations

cc 00

(2V ] x2 dF(X) = 2J x F(x)dx + V2T(V) (4.7)

and
00

JX#e_#z~dx a/3 +i-oe_Ia(1+o(1)), (V--*OO)

one readily verifies the relation (4.1) with (v) = _-vp+2- e- I ' : . Clearly the assumption

b) of Lemma 4.1 holds with some b, 0 < b < 1 log -- y" Thus the proposition follows

immediately from Lemma 4.1.

Example 2. Assume that for some a > 2, -7 > 0

F" = {FIyi(F) _< F(x)x' < - 2 (F), x > 7 3(F)}

where 0 < - 1 (F) _< 7 2 (F) < -, 7 3 (F) is locally bounded.
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Let

and I,, be defined as above in (4.3').

Proposition 4.2 a) X, is exactly n- -rate improvable on r and b) locally uniformly

in F

01 2) 2 (F)(F) 2o1
Rn(% n,F) 2 ( a n 1 ±o(1)), (n - oc).

Notice that again the smaller is a the higher is the improvement rate of the sample

mean.

Proof. By (4.7) the relation (4.1) holds with (v) = 2-. Thus the Proposition 4.2 is

implied again by Lemma 4.1 along the argument already used in proving Proposition 4.1.

Denote

log x = log log.. log x

k times

Example 3. Assume that for some a > 1, k - 1 2,...

k-I

F= {f17 i(F) _ JJ logi x(logkX)zrX2 F(x) -Y2(F), x > Y3 (F)}
t=1

for some 0 < 7 1 (F) < -y2(F) < oo and a locally bounded Y3 (F).

The example exhibits the following peculiar properties. First the attainable rate of

improvement of ±, is very high, namely ((log k n)a- n) - 1 , which is practically compa-

rable to the order n - 1 of the leading term of the risk Rn(X, F) for most sample sizes.

This apparently suggests that in a still larger class of nonparametric problems the first

order asymptotic optimality of a given estimator cannot be taken as a guard against its

improvability in some reasonable applications by appealing to higher order properties.

Second in distinction to the former examples 1, 2 the improving estimator we present

below is even second order unimprovable, or second order admissible. This sort of conclu-

sion, which can be drawn, with the help of Theorem 3.1, whenever the bias and variance

terms don't match each other, doesn't seem to be excessive, whence the higher order terms

of the risk expansion fall close to the leading one.
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Let

S= lo if k > 1,
\ (lg-)1/ , if k 1

Proposition 4.3 a) X is exactly ((log k n)' -n)-'-rate improvable on F; b) locally

uniformly in F

R.(I' ,F) _< n-la - - 2 71(F)((log k v_)*-ln)-'(1 + o(1)), (n --. oo)

and c) ' n' is second order admissible, or ((logk n)-ln)-1-rate unimprovable on F.

Proof. It follows from (4.7) that locally uniformly in F
271(F)(log v)-_'(1 + o(1)) _< )(v) _< 2 -2(F)(logk v)'-'(1 + o(1)), (v -- oc). (4.8)

Using relations

BnF <1 : )( ) = J xdF(z) = f F(x)dx + v-F(v) (4.9)

one obtains similarly

27 2 (F)(vzlogv)-1 (1 + o(1)), k > 1,
IBn,FI < (4.10)

1t272(F)(v(logv))-(1 + o(1)), k = 1.

Thus (3.1"), (4.5) result in the following:

R.(%,,, F) = n-' a2 - n-1 (2 )(Vn)1 + o(1)) + B',F

< n-oa2- 271 (F)((logk V 0 1))-'n)-'(1 + o(1)),

proving the second assertion of the proposition.

To prove the first and last statements notice that for any non-void vicinity V of

F there exists 6 > 0 such that the family G.,, defined by (3.1) with 4.(x) = X( &") ,

IcI < an = 6(vn) - ', belongs to V. Now using the inequality (3.3) with An(c) as in

Lemma 4.1 one obtains from (4.9)

inf sup (R.(lk.,F) - R.(41.,F)) >
Wn FEV A1  A2

_>- sup B',F(c) - A sup IBn,F(c)I -(an)
2  (4.11)

Icl<. n ann ICl<4.n) (.1

O(nlog n)- 1 , k > 1
= O(n(log n)*)-', k = 1

14



Notice that the logarithmic term incorporated in v" is essential only in deriving the

lower bound (4.11), while a simpler estimator ',n with ,(z) = X(V;) satisfies both the

assertions b), c) of Proposition 4.3.

So far we have analyzed higher order asymptotic properties X under progressively

heavier tail behavior of the underlying distribution F E F. It is all but natural to inquire

further what happens with this estimator while F ranges over the class

,F = {F: 7 1(F) < x2 F(x) < 7 2 (F), z > 73(F)}

where 0 < -1 (F) _< 72(F) < oo and 7 3 (F) is locally bounded.

Notice that X is no longer first order asymptotically optimal or even risk finite in

that case. Still Theorem 3.1 allows us to arrive at a meaningful result and moreover is

exhibiting a new kind of phenomena. We shall see that there still exists an asymptotically

optimal estimator %',, of the mean EFX which however is in that case only log (n)/n-rate

consistent and moreover the normalized risk n"Rn(01 , F) does not need to converge.

Define

0

and let 1 "1Vn = Vn-, tkn(X) = X( I .= - On(xi)
~n

i=I

Proposition 4.4. a) The functional %I(F) = EFX is exactly log (n)/n-rate estimable on

.F; b)

R~('%~,) <2-y2 (F) log n
R. (T., F)< -7( o (I + o(1)), n -+oo,

locally uniform in F and c) %F, is first order asymptotically optimal and exactly n--rate

improvable on F.

Proof. The inequality (4.9) when applied to F E F" gives locally uniformly in F

IBn,FI < 2f 2 (F)( 1 + o(1)).

On the other hand

()(V)= J z 2 dF = J2x-F(x)dz - v2F(v) _ 2- 2(F)log v(1 + o(1)), v -+ oo.

0 0

15



Thus
R,(C, F) = n - Var X (P) + B n-,l)(u) + B,F -

< 2Y2 (F)log n

n

Now the same argument leading to (4.11) applies with an = &u1 and

1 1

sup Bn,F(C) + sup IBn,F(c)l + = O(n')
IcI<an ann 1c)<an (Vnn)

2

implying that In is at most n-1 -rate improvable. That it is indeed that rate improvablen

can be easily demonstrated by considering the estimator n -1  Z 6v) with 6 sufficiently

small.

Remark 4.1. The way we have defined the class F is essential for the crucial assumption

Al of Theorem 3.1 to be fulfilled while the very definition of F allows for the oscillations

in the normed risk behavior of %,n.

Proceeding further with heavy tailed distributions F one is led to considering the

nonregular linear functionals still covered by Theorem 3.1 which will allow optimal rates

conclusions to be derived for such functionals.

Example 5. Let, for some a, f, 1 < a < 2, 0 < -y < oo,

Y = {FIyi(F) :5 x-"F(x) _ -y2(F), x > -y3 (F)}

where 0 < y1(F) :5 72 (F) < Y, -13(F) being locally bounded.

Define
V,(x) = min(IxI, v) sign x (4.12)

2 F = VarFPn(X)

with v = v, --+ oo to be defined below.

In asserting lower bounds in this and the next examples we use the following lemma.

Lemma 4.2. Let V C Y be a vicinity of a given F E F with T(.) bounded on V and the

family Gn,c be defined by (3.1), (4.12). Assume that Gn,, E V, Icl < 6vn1 , for some 6 > 0.
1 2Mc)

Let An(c) - A(6-1 Vc), where A E 0(1) is a symmetric density with A2 = ( -)dc < oo.
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Then

inf sup(Rn('.,F) - o2 ,F) >
'J' FEV

oo1

>2v_ I F(x)dx (e e-*-)A'(c)dc( +o(1)) 2 2 n

Mn 0

Proof. For a fixed 6 and Icl < 6vn1 one obtains

eb. (c) = Ee c ( = EF(1 + cVkn(X) + o(ckn (X)) 2 ) =

=+0,I) - 1 + o ( 1 ) ,  n--oo.

Next with B.,F(c) = EG.,(4n(X) - X) integration by parts results in the following

relations
00

B.,F(c) = J xd(1 - G.,,(x) - G.,,(-x)) + v(1 - G.,,(v) -G.,(-V))

- (-G,c(x) -G,(-x))dx

-e-n( C) J(ec" ( 1 - F(x)) - e-"F(-x))dx

o

-(1 + o(1)) (ec'(1 - F(x)) - e-cYF(-x))dx. (4.13)

Thus 00

B.,F(c) - B.,F(-c) = -(1 + o(1))(cc' - e - c ') JF(x)dx

so that

j A',(c)B.,F(c)dc A' JA(c)(Bn,F(C) - Bn,F(-c))dc

0

00 1

V I~ T(xr)dx J(ec6 - e-c6)AI(c)dc(l + o(1)), n --* co, V --+ 00.

V' 0

Hence using the inequality (3.4) of Theorem 3.1 with An as specified gives the result in

question.
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Consider next an estimator of %P(F) = EFX of the form
n

in = n-1  On (Xi) (4.13')

where %Pn is defined through (4.12) with

Vn = pno, P > 0.

Proposition 4.5. a) %P(F) is exactly "2(1-a)-rate estimable on F and b) locally uniformly

in F

nC'n,F) < \ 2-F - + k -_y() 21) °-')) nz ( + o(1//, n-- o.

Proof. Let V be a non-empty vicinity in F, F E V. Using the family Gn,c as in Lemma 4.2

it is easy to check that G,, E V, for Icl < 6v -1 , and sufficiently small 6 > 0. Thus by

Lemma 4.2
V2-v

2

inf sup Rn(%Pn,F) 2A((F)v1a + 0(1)) - A2V
, FEV 6(a - 1)n (1 2 n 2

_ 1 y(F)A3  _ A2 ) P2 2(1-a)(
6(- 1)p7 . +0(1)),

where

A3 = - J A,(c)('c 6 - eC 6 )dc (4.14)

0

can be made positive by a proper choice of A(.) e.g. by making A'(c) negative for 0 < c < 1.

Choose further p small enough to make the bound positive ensuring the lower rate bound

as stated.

To prove the last statement one obtains

2 < E 2 (X) = J z 2 dF+ 2 -(v) =Cr n, F n F+ FV

0

2 x'F(x)dx- 2-7 2 (F) V _a(1+0(1)) (4.15)

0

and along the lines of (4.13)

IBn,Fl = IEF¢n(X) - 4P(F)I <5 Y(z)dx < -( 1 +o(1)). (4.16)

V

18



Thus with v = v, = pnz., p > 0
R.(C',, F) = n-Y F+ 2

nF + B.,F 5

< ( 2- a + 1 _-P, n --- (1 +(1))

locally uniformly in F.

A slightly different upper bound would result for the estimator ','1 n - _ I

Rn(' 1 , F) 2-F 71(F) (2 - a +( + (F- 2 p 2(1-a) X

2-a1 a-1

x n a + o(1)).

Example 6. Let for some integer k > 1 and given a > 1, 7> 0

k-i

F"= {FI-yi(F) < x(IJ logi z)(log kX)-FT(X) 5 7 2(F), z > 7 3(F)}
i=1

with some 0 < 7 1(F) < 72 (F) < -, 73(F) being locally bounded.

Proposition 4.6. The functional %P(F) = EFX is exactly (log k n) 2(1-°)-rate estimable

on F and b) the estimator (4.13'), (4.12) with v = vn = n satisfies the relation

Rn('i.,F) _< 7 (F)(log k )2 (l a)(1 + o(1))

locally uniformly in F.

Proof. Applying Lemma 4.2 in the same manner as in Proposition 4.5 with

v = vn = pn(logk n)l-a

one obtains for an arbitrary vicinity V E F, F E V,

inf sup R.(i.,F) >
W- FEV

( 2-(F)pAj(1 + o(1)) A2 p2

19



with a positive b and A1 > 0. For a sufficiently small p this gives a lower bound

inf sup R:(,,,) c(V)(log k n)2('-')
'I, FEV

with a positive constant c(V).

Now for the estimator C, (4.15), (4.16) give with v = n:

-k-1

n 2JxF(x)dx F< 222(F)](Hlogix)-'(logkx)-'dx(1 +o(1))

< 5 272(F)(log v)-'v(1 + o(1)), k > 1
2-Y2 (F)(log v)-v(1 + o(1)), k = 1

and
0o

IBn,FI _<J-F(x)dx < Y2(F)(logk v)'--(1 + o(1)), v -+ 00,

wherefrom the statement b) follows.

The example just considered appears to be instructive in several aspects. First it

exhibits an estimator with an extremely slow, though best attainable, speed of convergence.

Next it differs from the previous ones (as well as many other estimation problems) in that

the risk of the best convergence rate estimator is mainly contributed by the bias rather

than the variance term. Notice that just as in the two previous examples there exists an

estimator with quadratic risk tending to zero at the best rate though the sample mean

clearly has no even finite second order moments.

The examples 1-6 feature the sort of results one can arrive at with the introduced

notion of a.i.l. modes. Further applications to a wider class of functionals will be presented

elsewhere.
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